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ABSTRACT

The re-entry into a planetary atmosphere of a bo
dy of any form is considered. The body is assumed
to be thermally anisotropic and the thermal coef-
ficients are assumed to vary with temperature.

A general procedure is introduced to study the
thermal transient due to kinetic heating and ra-
diation. Some approximate similarity laws for heat
conduction in structures of small thickness and nu
merical examples complete the work.

1. INTRODUCTION

It is possible to substantially lessen the heat
shidding problem for spaceships re-entering into
the terrestrial atmosphere if the material employed
for the shidding structures exibits a suitable heat
conduction anisotropy. For this purpose the material
shall have a thermal conductivity in an established
direction much less than in any other direction nor
mal to the first (Ref. 1).

Many new materials as, for an example, the pyro-
litic graphite exibits such anisotropy. It is, also,
important to point out that the corresponding aniso
tropy tensor can strongly vary in function of the
temperature (Ref. 2).

The corresponding problem of the heat conduction
can be formulated, indeed, by the following equa-
tions (Ref. 3):

at t = t, T=T, (M
at t>t, -f=KgradT (2)
- di ok 3
div f + g o (3)
-f-rv=9Q (4)

In the abovesaid equations To is the initial
temperature at time t=to.

The components of the two vectors grad T and f
along a whichever direction give respectively the
derivative of the temperature T and the heat flux
in that direction. They are related through a 1i-
near trasform (2) operated by the conductivity ten
sor K.

In any element of unity volume the heat condu-
ction flux clearing the unity time is -div f , whi-
le the heat generated inside the elements is q, cal
ling ¢ specific heat. The component of -f along the
unit vector v normal to external surface of the
body ¢ , represents the heat flux Q for unit of ti
me and for unit of surface received by the body
through o . It is assumed that in equations (3)
and (4) one can write q and Q in function of the
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other quantities which are defining the problem
(Ref. 4).

Normally the system of equations (1), (2), (3)
and (4) is not linear with T. The K and c, indeed,
are generally functions of T. Moreover the functio-
nal dependence of Q with T may be not linear. The
indipendent variables of the problem are in general
four: the three spacewise coordinates plus the time
wise coordinate. These premises show very clearly
from one side the difficulties to obtain exact analy
tic solutions and from the other the complexity of
an exclusively numerical approach.

The present report deals basically with the fol-
lowing points:

i) The definition of an ideal material called
hereinafter U.A.L.D. (Uniformaly Anisotropic
with Linear Diffusivity) and it can be consi
dered as a model of new materials of practi-
cal interest. This definition if very well
consistent with available experimental data.

An integration procedure of the (1), (2), (3)
and (4) equations applied to a body made of
whichever U.A.L.D. material.

By using the proposed integration procedure,
the abovesaid equations are substituted by

a small number of first order integral Vol-
terra equations depending only upon time.

ii)

iii) Some approximate similarity laws for heat
conduction in structures of small thickness.

iiii) Numerical examples.

2. THE UNIFORMLY ANISOTROPIC BODY

It is considering an anisotropic body. In a poini
of the body, K is the heat conductivity tensor and
¢ the specific heat. Letting T, a reference tempera
ture, E and c, are the corresponding values of K
and ¢ for T=To. Now it will be defined as un1form1y
anisotropic a body where at each point and for any
value of T, the tensor K can be obtained as the pro
duct of a scalar function A(T) by the tensor K,. In
view of the fact that K is a symmetrical second or-
der tensor, there are three orthogonal principal di
rections and three principal values of the conducti
vity. It follows that in a point of the body where:

{body uniformly anisotropic)

A(T) - K,
i) the three principal direction do not vary with
temperature;

ii) the three principal conductivities are varying
proportionally.



Subsequently it will be as
perature functions A(T) and £} be the same for all
the points of the body. If thg body is homogeneous
¢, and K, will be also the same in any point. Final
1y the bodyshomogeneous oleotropic when point by
point ¢, is the same and K, rotates its own three
principal directions along the coordinate lines of
a orthogonal curvilinear reference system (e.g. cy-
lindrical, polar spherical etc.), keeping unvaried
the three principal values of the conductivity.

The abovesaid case is particularly important for
the new materials which are of interest for the pre
sent report.

Remembering now that in equation (5) A(To) = 1
and introducing equation (5) in equation (1) and
(2), it obtains:

umed that the two tem

div [jﬁo A(T) * grad TJ +q-= éi Co %% (6)
0

Now two new temperatures T' and T" are defined
as it follows:

" T . 7
T = /;0 A(T) * dT (7)
o T T
1 =/To (C:(o L dT (8)

If the thermal characteristics of the body were
not varying with temperature, the following results
could be obtained:

A=< =1 therefore T" =T' = T-To

In the general case it can be written:

T =T +bp (T2 + b3 (T)3 4 ..., (9)

where bs, b3 are constant.

Introducing now (7) and (8) into (6) it comes out:

oT"

rqec (10)

div [50 ' grad TZ!

Substituting the (9) into {10) it obtains: (m

div {%O - grad Ti} £ =gy gt 1+2bpT! +3b3T'2 iJ

The eq. (11) can be considered as the conductivi
ty equation in an anisotropic body with thermal dif
fusivity proportional to the polinomial into square
brackets of the right term of the equation (11).

3. THE U.A.L.D. BODY

In the case when only the first two terms of
equation (9) are considered, as it follows:

™ = T+ by (T')2 (12a)

or
2bpT' = \/ 1 + 4byT" - 1

the body shall be called "Uniformly anisotropic
with Linear Diffusivity". Equation (11) becames
indeed:

div Il(o-grad Tj +q = Co(142byT" )gT (13)

(12b)

Equation (13) can be considered as the heat con-
duction equation in an anisotropic body with diffu-
sivity varying linearly -with temperature.

The U.A.L.D. body is then characterized by the
two relations (5) and (12), which can be written:

(14a)

//TA(T)d;W i14b)
To ’

T
/ 0 g Maryan o,
To

It can be pointed out that at T = To:

d , ¢(T)
It 1s part1cu1ar1y 1nterest1ng the case where
¢ _ , which corresponds to a costant specific heat.
Co In this case, by using the second equation
(14), it comes out:
T
2bp | A(T)dT = T+4by(T-To) - 1
To

which gives:

1

—
\/ 1+4bo(T-To)

The equation (15) is in fairly good agreement
with the experimental data of the heat conductivity
for the pyrolitic graphite as presented in Ref. 2.

The case where:

A(TY = (15)

C
. " 1 (16a)
]
KA(T) = K (16b)
]+ﬂ_
Th
(being Ty =‘Z%£ = constant), the material shall

be called U.A.L.D. perfect.

An intermediate case between that described by
(14) and that defined by (16), can be obtained by
assuming valid the second equation of (16) for the
heat coqduct1v1ty, but w1tho?$ the assumption
T % =—-— and calculating by using the second
equation? (14). The result iS°the following:

c(T) 1

{ E+4b2T*(\/1+T—}T£ :‘ (17)
53 \/'I]_'_ T;T_O L |

Tx %



The material is called U.A.L.D. ideal when:

1

K=K (18a)
F 1+ T-To
Tx
] T-To
eT) = 148b,T  ( g, 1) [(se)

It can be observed from equations (18) that:

T=To+ (1+ b2T')T' (18¢)

This relation can be particularly useful for the
problems where radiation is relevant.

As it can be seen from (18), for homogeneous
U.A.L.D. ideal body, when the quantities K, and c,
(relative to T = To) are known, the corresponding
variations of K with T depend only from the constant
Ty » while the similar variation of c with T are
functions also of the constant b,. For the case
4bpT % = 1, the (18) become equivalent to (16) and
the material is U.A.L.D. perfect.

For the bodies of practical interest K decreases
in general with the temperature; this means that
the constant Ty is actually positive. For the pyro-
Titic graphite T, 1is of the order of 400°F. Refer-
ring to (18) it can be seen the way in which =
varies with temperature depends on the non—dimgﬁsig
nal constant 4bpT . .

It gets, indeed:

=3
C =
¢ o _1Eﬁ“ 2 ° (4T -1) (19)
0.y 2 "

d ()
iE c T-T
The (19) shows that-E increases with—.0if 4b,T> 1,
viceversa decreases if "° 4byT, {1. *

4. A TRANSFORM OF THE BOUNDARY CONDITIONS

A transform for the boundary conditions proposed
and applied in previous works (Ref. 5 and 6) can be
applied also to the anisotropic body. The element
of body volume do /dv/at the surface o with the
elementary thikness /dv /are considered. Each of
these elements of volumes acquires, consistently
with eq. (4), a heat quantity Qdo for unit of ti
me.

It can be assumed without geopardizing the cor-
rectness of the solution that such quantity of heat
instead to entering in the body through o be Tocal
ly generated into the element of volume do /dv/
(Fig. 1).

This is identical to suppose that not heat flux
takes place through o and heat sources q are
present in the elements of volume dg /dv/ located
in the thikness /dv/ at the boundary of the body.

Fig.1 Tranform of the boundary conditions

These heat sources q are defined in such way that:

do /dv /q = Qdo - or q/dv/ = Q

As it will be seen the presence of heat sources
in the elementary thikness/d v /- which have an infi
nite value with finite integral - does not add any_
analytical difficulty to the integration procedure.
Be this transform, the equations (1), (2), (3) and
(4) become:

=ik, T=7 (20)
-y 4,
= fv= X - grad T 21)
-divf+q' =c g% (22)
g (23)

instead
in such a way to include also the heat sour-
in the thikness / dv/at boundary o

In equation (22) it has been written q'
of q
ces _Q

/dv/

5. THE HEAT CONDUCTION IN U.A.L.D. BODY

The heat conduction problem in a U.A.L.D. Body
can be described by the following relations, where

P is a generical point in the body and P; a generi
cal point on the surface o of the body:
A. Assumptions

K =A =£’——

K Ko € ® e Ce

. o S
Let A = A(T) and it (T)
(25)

T T
T+ AdT T =] S dT=T' +by T2
To To®°

S aatP
N e

= g
/dv/

q
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B. Equations

t

att=t6 Y e=rs]
att>t ~—-f =K, grad T
- div f +q' =c, (142 T")° 26)
f - v =0 (with ¥ normal tooat Pg )

Now it is considering the function U of P as de
fined, unless a constant multiplier, by the rela-
tions:

div(K,-grad 2 =

(Ko-gr U) +pfco U

Ko+
(Ko-grad Un)

| =
i
o
[«7]
(o
o

with n

n
o
-
~N

and pg a positive constant to be determined (pro-
blem's eigenvalues).

The Up are making up a closed and complete set of
orthogonal functions. If the constant multiplier is

known, the basic property of the U, is the following:

0 . if
Co Un Um dV=

n#£m

(28)

1T if n=m

v

In the case of bodies of simple shapes (like cy-
linder, sphere, parallelepiped, etc.) which are ho-
mogeneous with oleotropic anisotropy the functions
Up are known (Ref. 1). In a more general case many
and very good numerical methods are available to
calculatethe U, with the desired accuracy. Further-
ly the constant p, and the functions U, defined by
(28) are taken as known.

Coming back now to system (25) it is assumed that
T' and q' might be written in the following form:

o0

(29)

=;i v (t) Un (P)

1 3 L
= G2 g (t) Un (P) 3n)
o
From inspection of equations (27) and (28) it can
be seen that for n=o p,=0 and U, (/bcodV)'

furthermore for n > o, coUpdv = 0.

Substituting now (29) axd 30 in the system (25), (41)

by using eq. (28), 1t obtains:

(n) 4
a;” + ppév, = =7 bZEZﬁ Jo A yl

let t = to Vo=V )e

Letting (p)
Ai,j :/com Uj Un dv

zz.1h1= to be extended to all the combinations
without repetition of i and j.

dy, 2 (Vi VP (31)

(32)

From equations (31) it is possible to get the

integral equations: (33)

LRig t (n) .
iR (t-to) g d pnat -to)
Ve L a 2b2§£1,j.A1jdt'(Vi vj)e gt

The equations (33) can be integrated step by step
starting from the initial conditions which are known
at t=to. In equation (33) it can be also taken into
account the heat radiation from the body, by employ-
ing equation (18c).

6. SIMILARITY LAWS FOR THE THIN SPHERE

The spherical shell is assumed to be homogeneous
and transversally isotropic , id est oleotropic
with two principal conductivities only.

Be r, B,a the polar spherical coordinates and
Ko-A(T) and Ky-A(T) the conductivities in the r and
in the 8 or a directions respectively. It ry and
r] are the outer and inner radius, respectively, it
is assumed that s = r, - ry<« r,. With such an as-
sumption the heat conduction equation simplifies as
follows:

v AL B oV A Vo
6_§2+c6;¢_2 % [Cosﬁ(ﬁlJ'co?Bba’J' p' =

where the initial conditions are

v, oV
(T#5) 57
(34

at t = to V=o0 (35)

and the boundary conditions are:
50 o . g
3 (36)
e | g
S

(34) we have:

e

In eq.

(37)

(38)

2
A= El %52 = const.

Ke (43)

Integration of (34), (35), (36) for example by
using the method outlined previously, gives all so-
lutions coming out from the similarity laws (37)-
(43).

A crude approximation can be used to linearize
the eq. (34).

Let us assume that @ =
sional heat flux

L

S . :
is the non dimen-

|

T

=

(o]



at & =0, and be q = 0. Be:

o) 8 -7 (%)

o) Ko T

(44)

the average heat fluxe at & = o.
A solution of eq. (34) can be found which is de-

pendent on T only:
1] v dV (45)
s

Such a solution is correct only if ® is destri-
buted uniformally with body. It is obtained:

g'—\/1 /(Pdr

If in the equation (34 to the expression (1 +
BV )
it is obtained the linear equation:

(46)

Ve, A4 B /1 _Q)I+p.=ﬂ (47)
g cosB 08 63 0s%g o’ d
where
\/]w/ F dr (48)
Ea. ) with ) and ( can be solved very

easily, because 1n th1s case the eigenfunction U,
and the eigen-values p% are perfectly known /(Ref..
5).

Once eq. (47) with (35) and (36) are solved for
a given value of A and for given #, we know V=V

(§,8,2,4 ). In order to come back to the dimen-
sional problem, the following formula:
/ /0 /P
s g 25 /@(0)d0 (49)
o Jo
and (38)-(43) can be used.
7. THE U.A.L.D. PARALLELEPIPED
By using also on the case eqs. (37), (40)-(43)
it is obtained:
R ”(a 6’ v)+ ; (]HLV v (50)
68" " " o 9‘2 2! o7
§= 0 01: E 0
£ 0 =X
£= 1 55 v o where & <
, ov
=1, on - 0 ,
7 oV where 1=
M= ﬂ1 e 0 re
0
gt =k =
of 7
T where £==
e b] (jV =0 L
08

the approximation (46) is substituted,

being s = x,-x, and r, a lenght of reference in the
yz plane.

The general method of solution obtained in the re
port can be applied very easily, because pﬁ and Un
are well known.

A crude approximation, similar to the one used

for the thin sphere,can be worked out.

8. THE U.A.L.D. THIN CIRCULAR CYLINDER

Be r, w, z the cylindrical coordinates; it is as~
sumed s=r,-r7 <« ro.
[t is obtained:

ov
gyt <
3t Mgt g e k)
§=0" "8V _
o0& where £ = X
E<1 oV s
Ll o
08
gzbo d)_l:O 2
8 where & = —
Lty 32, !
68

Similarity rules are the same as for thin sphere,
exposed by eq. (37)-(43).

The general method of integration can be used for
(51).

Also in this case p2
5). "
Also in this case a crude approximate solution
can be immediately found by using the same procedu-

re already seen for the sphere.

and U, are well known (Ref.

9. HEAT RADIATION IN THE U.A.L.D. BODY

In eo. (4), Q includes the radiation losses Q :
r
Q = o T4 or
1
Q. = (Lo [To + T (14 —r)’ (52)
r 4Ty
) ol

By introducing (52) into eq.

i 4
gn=gn+_§LeZ,{To+(;;rvr.U (— 4T*:iy -U u} Undo (53)

where Eh o %aln do is assumed to be a
known funct1on of t1me and @ = Q3 - Q.
Expression of eq. (53) supplies:

(31) it is obtained:

g, =g, +L205(V) (54)
where S is a polynomial expression of the eight or-
der in the unknowns V. The nine coefficients of S
are known surface integrals of products of the ei-
genfunctions Un. Introducing (54) into eq. (33), the
effect of surface radiation is fully taken into ac-
count.



10. GENERALIZATION OF THE METHOD

The most of this report deals with a U.A.L.D. bo
dy. .

It is obvious that by starting from equation (11)
it is possible to generalize the procedure to a bo-
dy with uniform anisotropic and polynomial diffusi-
vity.

11. NUMERICAL EXAMPLE

As an application of previous analysis the case
of a re-entering anisotropic hollow sphere is consi
dered.

Initial altitude is supposed of 80 km, and a
straight-line trajectory is considered, with a f1i-
ght path angle of 12°.

Quter radius of the sphere is 0.5 m, thickness
is 0.0057 m, and the weight is 50 kg.

The thermal properties of the anisotropic mate-
rial considered (pyrolitic graphite) (Ref. 2) are
such that it is possible to assume K,/K, = 160.

Fig. 2 shows the differences between the real values
of K(T)/Kg and those supposed in the calculation.

Calculation of heat flow rates was performed by
the method of Ref. 4 and results are plotted in
Fig. 3 at the stagnation point.

The variation of heat transfer coefficient, re-
ferred to stagnation point value, is given in Fig.4.
The said distribution is quite accurately expressed
as

0.3975 + 0.6942 P, - 0.0917 Py

where P and P4 are Legendre's polynomials of order
2 and 4 respectively.

As said, the calculation is performed by using
the formulas of the previous part.

Fig. 5 shows time-history of temperature at the
stagnation point and at corresponding point of the
inner surface.

It is possible to see that the temperature of
the surface increases untill the stabilized tempera
ture without reaching any peack of temperature as
on the outer surface.

Fig. 6 shows the variation of temperature along
radius corresponding to the stagnation point at
maximum time.

Fig. 7 shows the variation of temperature at out
er surface at maximum temperature time.
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Fig.2 Comparison between real and experimental va-
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Fig.5 Time history for different radii at stagna-
tion point in the U.A.L.D. spherical shell
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Fig.6 r-wise variation of temperature along radius
corresponding to stagnation point (at maximum tem-
perature time)
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Fig.7 B-wise variation of temperature at outer sur-
face at maximum temperature time



